Series 1995L

Gemco®

Micro-Set Programmable Limit Switch

Installation & Programming Manual
Preface

This manual is for the Installation and Maintenance of the Gemco Series 1995L Micro-Set Programmable Limit Switch.
Contents

Chapter 1: Introduction/Description 1
1.1 Programmable Features .. 1
1.2 General Information .. 1
1.3 Controller Features and Functions ... 2

Chapter 2: Installation ... 3
2.1 Mechanical Installation .. 3
2.2 Electrical Installation ... 4
2.3 Wiring Instructions ... 4

Chapter 3: Programming ... 5
3.1 Security Input ... 5
3.2 Initialization .. 5
3.3 Scale Factor .. 5
3.4 Number of Outputs ... 6
3.5 Selecting Number of Outputs .. 6
3.6 Multiprogram (Available Only on “P” Option Units) 6
3.7 Setpoint Formula .. 7
3.8 Multi-Program (Only Available on “P” Option Units) 7
3.9 Setpoints .. 8
3.10 Clear an Existing Setpoint ... 9
3.11 Clear All Setpoints ... 9
3.12 Setpoint Availability ... 9
3.13 Electronic Offset .. 10
3.14 Reset-to-Preset ... 10
3.15 Motion Detector ... 11
3.16 Power-Up in a Position or RPM ... 12
3.17 Decimal Point Programming ... 12
3.18 Enable/Disable Outputs .. 13

Chapter 4: Expansion Modules ... 14

Chapter 5: Fault Check ... 15
5.1 PLS Output Status on Fault Conditions 16

Installation & Maintenance Manual
Chapter 6: Security Inputs	17
Chapter 7: Troubleshooting	18
7.1 Preliminary Checks	18
7.2 Electrical Noise and Power Quality Consideration	18
7.3 Grounding	18
7.4 Incoming Power	19
7.5 Low Level Inputs	19
Chapter 8: Specifications	20
8.1 1995 Micro-Set PLS Programmer	20
8.2 Mechanical Relay (Single Pole, Double Throw)	20
8.3 AC Solid-State (Single Pole, Normally Open)	20
8.4 DC Solid-State (Single Pole, Normally Open)	21
8.5 1995E Output Expansion Module	21
Chapter 9: Troubleshooting Guide	22
Chapter 10: Wiring Diagrams	25
Chapter 1: Introduction/Description

The **1995L Micro-Set** is a fully self-contained, 0 - 10 Volt input programmable limit switch. It includes a three-digit LED display, six output relays, and one fault check relay, and it is fully programmable for the following features:

1.1: Programmable Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Factor</td>
<td>Valid Scale Factor are 2 to 1,000.</td>
</tr>
<tr>
<td>Electronic Offset</td>
<td>Fully programmable offset to any number with the scale factor.</td>
</tr>
<tr>
<td>Reset-to-Preset</td>
<td>Reset value is programmable to any number within the scale factor.</td>
</tr>
<tr>
<td>Motion Detector</td>
<td>LS6 can be programmed for either limit switch or motion detect output.</td>
</tr>
<tr>
<td>Expansion Outputs</td>
<td>Programmable to accommodate up to 30 circuits.</td>
</tr>
</tbody>
</table>

See Section 1.2: *General Information - Software Option “P” for more options.*

1.2: General Information

The **1995L Micro-Set** is a fully self-contained, microcomputer-based Programmable Limit Switch (PLS) with a convenient keypad for programming each independent output circuit to open or close at the desired settings. This system allows precise position control of linear motion.

A **1995L** consists of an LTD (Linear Displacement Transducer), LDT to programmer cable assembly, and the programmer, which provides six limit switch outputs and one fault check output. The optional output expansion modules will add six additional limit switch outputs per module, and up to four expansion modules can be driven by the programmer, for a total of thirty limit switch outputs.

The position input into this PLS is a 0 to 10 VDC analog signal usually provided by a Gemco LTD. The 0 to 10 volts is generated by the LTD over its active stroke. The PLS will read out position directly in inches if the scale factor entered is the active stroke of the LTD (in inches).

The LTD generates a 0 to 10 Volt D.C. analog signal representing an absolute Linear position. This Analog signal is converted to a digital signal at the Micro-Set. A microprocessor calculates and/or converts these signals based on user-programmed data.
Chapter 1: Introduction/Description

As the LDT passes through the preprogrammed dwell settings, the programmer outputs can energize solenoids, relays, or solid-state circuitry to control external circuits.

The 1995L PLS was designed for use in linear applications. It incorporates many features for safe, efficient operation.

The completely self-contained unit can operate up to 30 independent outputs (six standard) based on the linear position of the LDT.

It offers an on line fault check which provides an automatic, in-process mechanism to verify that all major programmable limit switch functions are operating properly. The fault check output can be energized by activating the fault check enable input. The output is a mechanical relay with 1 N.O. and 1 N.C. contact, which remains energized during normal operation.

A programmable motion detect output will energize a relay when the LDT speed meets or exceeds the customer-preprogrammed value.

SOFTWARE OPTION “P” ENHANCES THE SYSTEM BY OFFERING:

- **Multiple Programs** - Allow storage of job setups for future use. This saves time spent reprogramming and lessens the chance of programming errors when tooling is changed.

- **Reset-to-Preset** - Allows an external input _i.e. prox switch_ to reset the PLS to a preprogrammed value.

1.3: Controller Features and Functions

The controller is housed in an all metal case that can be panel mounted. The controller consists of a keypad, a CPU Board, and a Power Supply I/O Board.

The following features are found on the 1995L Micro-Set.

- **Display** A (3) three-digit LED readout and a 10-place bar graph will show current Linear position, programming details and output status.

NOTE: The Bar graph will not display expansion board relay status.

- **I/O** Mechanical relays, AC solid-state, and DC solid-state relays are available, and any combination can be specified. The example in the catalog shows three AC and three DC solid-state relays being specified. There is a fixed price adder for any combination of relays other than all mechanical (6M). The fault check relay will always be a mechanical relay regardless of the type of output relays specified. See Chapter 8: Specifications.
Chapter 2: Installation

This section describes the installation and wiring of a standard 1995L Micro-Set PLS. Changes to these instructions should be made as necessary if special options and/or equipment are used.

The 1995L Micro-Set should be installed in an area free of water spray, corrosive gases, flying chips or other foreign matter. The operating temperature should be between 32 and 125 degrees Fahrenheit, with less than 95% relative humidity.

2.1: Mechanical Installation

Mounting the 1995 Micro-Set PLS

The 1995L Micro-Set PLS is designed to be panel mounted. The face of the 1995L can be affected by water and/or oil spray. Provisions should be made to protect the face of the unit from spraying or splashing.

Panel cutouts, mounting holes, and sizes for each component are shown on Pages 6 and 7 of the 1995L catalog section.

The controller should be mounted in the appropriate panel cutout and securely bolted into place using the four (4) 3/16" diameter mounting holes.

NOTE: In instances where the 1995L is being mounted directly on a mechanical stamping press, care should be taken to isolate the controller from shock load and vibration.

It is always good design practice to mount the controller in the enclosure as far away from the motor starters and control relays as possible to minimize the effects of electromagnetic interference (EMI).

Interconnecting wiring also should be routed to minimize EMI coupling.

Mounting the Transducer

The transducer should be mounted securely to the machine in such a manner so as to minimize shock and vibration. The transducer should be coupled to the moving machine. Coupling methods should minimize backlash and be in accordance with the system accuracy required.
2.2: Electrical Installation

The Micro-Set is designed for use in an industrial environment and incorporates extensive transient suppression circuitry. However, the same general installation rules should be followed that are used on all microprocessor-based equipment. Incoming AC lines should be from a clean power source and lines carrying computer level signals should not be routed in the same conduit as high voltage, transient-producing circuits such as variable speed drives, welders or DC switching circuits.

The 1995L PLS is designed to be used with a Gemco 0 to 10 Volt Analog LDT. Wiring for this system is shown in Fig. 10-1, Fig. 10-2 and Fig. 10-3; Chapter 10: Wiring Diagrams. This wiring diagram is applicable for all standard 1995 PLs.

2.3: Wiring Instructions

Attach the pre-wired plug on the LDT cable to the LDT and route the shielded cable through a separate grounded (earth ground) metal conduit to the panel and connect the mating half terminal block to the 1995 L PLS. Be sure the shield wire is connected to Pin 1 of the 16-place connector.

When extension to the factory supplied cable is necessary, a junction box should be used to connect the wire leads and the cable shields from one cable to the other. The cable shield should be grounded at the 1995 Micro-Set only.

AC line voltage - 115V AC 60Hz - should be connected to the 1995L PLS at the “AC power” terminals on the 24-place connector.
Chapter 3: Programming

3.1: Security Input

The security input is often referred to as the “Run/Program” input. This input is located on the 16-place terminal strip and is discussed in Chapter 6: Security Inputs. This input prevents unauthorized changes to the programmed functions. With the unit in the “Program” mode, all functions of the controller can be programmed. With the unit in the “Run” mode, all setpoints, reset-to-preset, motion detect and other operational functions can be verified, but the programmed information cannot be changed.

3.2: Initialization

The following key commands \text{CIR#} \ - \ \text{9} \ - \ \text{9} \ - \ \text{5} \ - \ \text{ENT} should be entered on the keypad to clear all programmed data upon installation and \text{PRIOR} to programming. This sequence clears all programmed data. All operating parameters must be reprogrammed after using this initialization function.

3.3: Scale Factor

\underline{NOTE:} Programming of the desired scale factor or the number of outputs will delete all programmed data held in memory. Therefore, these should be the first steps in your setup procedure.

The 1995L Valid Scale Factors are 2 to 1,000.

To program the scale factor, the following procedures must be followed:

1) Unit must be in the “Program” mode.

2) Depress \text{CIR#} \ - \ \text{1} \ - \ \text{8} \ - \ \text{0} \ - \ \text{ENT} - \text{Desired Scale Factor} - \ \text{ENT}

\underline{NOTE:} Display will read from 0 to 1 less than Scale Factor.
3.4: Number of Outputs

The 1995L comes programmed for six outputs, but it is expandable to 30 outputs.

3.5: Selecting Number of Outputs

Selection of the number of outputs should be done after the desired scale factor is entered, and before any other programming is done. See Chapter 4: Expansion Modules.

A) To program the number of outputs desired, the unit must be in the Program mode, then depress CIR# - 1 - 7 - 7 - ENT. The unit will then show the number of circuits previously stored. To change the number of outputs desired, enter the number of relays in multiples of six and depress ENT.

1) Valid numbers for CIR# - 1 - 7 - 7 - ENT are 6, 12, 18, 24, and 30.

NOTE: If a number is entered that is not a multiple of six, the unit will store the next multiple of six.

3.6: Multiprogram (Available Only on “P” Option Units)

The Multiprogram feature allows the storage of multiple sets of output sequences that are preprogrammed based on the various requirements of different tooling. When dies or tooling are changed, the new program is simply called up on the keypad and all outputs are automatically set to the new output sequences. The number of available programs will vary based on the number of output limits and the number of setpoints programmed on each limit. A typical six-limit system with one “ON” and one “OFF” setpoint per output will be capable of storing twenty programs in memory.

A setpoint is one “CIR ON” or “CIR OFF” entry. The following formula shows the relationship between the number of output relays, the number of programs, and the number of setpoints available per program.
3.7: Setpoint Formula

\[
\text{Setpoint/Programs} = \frac{1467 - 2}{\text{Number of Programs} \times A}
\]

Where: A
- 5 for 6 outputs
- 6 for 12 outputs
- 7 for 18 outputs
- 8 for 24 outputs
- 9 for 30 outputs

Setpoints are in whole numbers (drop decimal).

Example: 12 outputs relays with 10 programs:

\[
\text{S.P.} = \frac{1467 - 2}{10 \times 6} = 24.45 - 2 = 22 \text{ Setpoints/Program}
\]

The following table shows the relationship between the number of outputs, the number of programs, and the number of setpoints per program. The table only shows a few of the many combinations that are possible. Before programming outputs, it is advisable to verify that enough setpoints are available, otherwise the number of programs may need to be reduced. A setpoint is one “CIR ON” or “CIR OFF” entry.

<table>
<thead>
<tr>
<th>6 OUTPUTS</th>
<th>12 OUTPUTS</th>
<th>18 OUTPUTS</th>
<th>24 OUTPUTS</th>
<th>30 OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/253</td>
<td>1/242</td>
<td>1/207</td>
<td>1/181</td>
<td>1/161</td>
</tr>
<tr>
<td>20/12</td>
<td>9/25</td>
<td>5/39</td>
<td>4/43</td>
<td>2/79</td>
</tr>
<tr>
<td>26/9</td>
<td>12/18</td>
<td>8/24</td>
<td>5/34</td>
<td>3/52</td>
</tr>
<tr>
<td>36/6</td>
<td>17/12</td>
<td>10/18</td>
<td>7/24</td>
<td>5/30</td>
</tr>
<tr>
<td>97/1</td>
<td>27/7</td>
<td>13/14</td>
<td>8/20</td>
<td>6/25</td>
</tr>
</tbody>
</table>

Number of program \(\uparrow \downarrow \) Resulting in number of setpoints per program.

3.8: Multi-Program (Only Available on “P” Option Units)

Programming 1995 PLS for Multiprogram

A) Specify the number of programs desired, unit must be in the “Program” mode. Depress \(\text{CIR#} - [7] - [7] - [0] - \text{ENT} - \text{CIR ON} - \# \text{ of Programs} - \text{ENT} \). See above table for the capabilities of your unit.

B) Upon entering the above sequence, depressing the \(\text{CIR OFF} \) key will display the maximum amount of setpoints per program.
C) \textbf{CIR\# - 7 - 7 - 2 - ENT} will display the total number of setpoints available for use in the currently selected active program.

D) To display the active program, depress \textbf{CIR\# - 7 - 7 - 1 - ENT}. To change programs, with the unit in the Program mode, depress \textbf{(0 thru Highest Program Number) - ENT}.

\textbf{NOTE:} Program 0 is the first program. If 10 programs were previously selected using Code 770, there will be programs 0-9.

3.9: Setpoints

Programming New Setpoints

A) Unit must be in the “Program” mode.

B) Select a limit switch circuit for programming. Depress \textbf{CIR\# - (1 thru 30) - ENT}. The circuit number selected cannot exceed the number of output relays specified earlier using CIR\# 177. See Section 3.5: Selecting Number of Outputs.

C) Depress \textbf{CIR ON - (Desired Pos) - ENT}. The will set the selected relay turn-on point.

D) Depress \textbf{CIR OFF - (Desired Pos) - ENT}. This will set the selected relay turn-off point.

E) Multiple ON and OFF setpoints can be programmed on each circuit. All decimal points will flash when more than one setpoint exists on the selected circuit.

F) An LS (Limit Switch) may not have the same value for both the ON point and the OFF point. If a value is entered that is already a setpoint for that LS, only the new one will be used. For example: If LS1 had an ON point at 100 and an OFF point of 100 was entered, the ON point at 100 would be deleted. The OFF point at 100 would then be entered. Assuming that these were the only setpoints, the output would turn ON at 0 and OFF at 100.
3.10: Clear an Existing Setpoint

A) Unit must be in the “Program” mode.

B) Depress CIR# - (Output to be Cleared) - ENT .

C) Depress CIR ON or CIR OFF key until setpoint to be cleared is on the display.

D) Depress the CLR SET key. Upon depression of the CLR SET key, the setpoint on the display after Step C is deleted.

E) This keypad sequence must be completed once to clear an ON setpoint and a second time to clear the OFF setpoint. See Section 3.9: Setpoints

3.11: Clear All Setpoints

There are two methods of clearing all setpoints. This is accomplished as follows:

A) Unit must be in the “Program” mode.

B) To clear all of the setpoints in the active program, depress: CIR# - 9 - 1 - ENT . The active program is the program currently selected using Code 771. See Section 3.7: Setpoint Formula.

-OR-

C) To clear all the setpoints in all programs, depress: CIR# - 3 - 9 - 1 - ENT .

NOTE: CIR# 91 and CIR# 391 only clear out programmed setpoints. They do not clear out Linear Speed ramps or change circuits that have been selected as Linear Speed; however, they will clear the setpoints programmed in these circuits.

3.12: Setpoint Availability

Every 1995 PLS has a limit on the number of setpoints that can be stored in memory. On units with the Multiprogram option, refer to Section 3.7: Setpoint Formula to calculate the maximum amount of setpoints available.
On units without Multiprogram, setpoint availability is dependent on the number of outputs enabled.

- 6 Outputs = 253 Setpoints Available
- 12 Outputs = 242 Setpoints Available
- 18 Outputs = 207 Setpoints Available
- 24 Outputs = 181 Setpoints Available
- 30 Outputs = 161 Setpoints Available

Refer to the Section 3.5: Selecting Number of Outputs.

3.13: Electronic Offset

The offset key is used to synchronize the digital display with the actual machine position. The **Series 1995L PLS** has full scale factor offset capabilities, and the offset is held in nonvolatile memory.

Programming the Electronic Offset

A) Unit must be in the “Program” mode.

B) Stop machine at a known location.

C) Depress [OFFSET] - (Actual Machine Position) - [ENT]. After this sequence is completed, the display will change to the position entered. The display and outputs are now synchronized with the actual machine position.

3.14: Reset-to-Preset

Remote Reset-to-Preset Value - This option allows the position of the PLS to be reset to a keypad selected value; this value would be based on an input from a remote contact or proximity switch mounted at a known location on the machine. Typical uses are to synchronize outputs with the leading edge of products moving through a machine.

The reset-to-preset function of the **1995L** requires an isolated contact closure. The isolated contact is used as an input to the **1995L PLS**; which upon closure, will reset the unit to its preprogrammed reset value. If an auxiliary contact is available, it can be wired to the **1995L PLS** to perform this function. If an auxiliary contact is not available, a reset input relay (Part No. SD0395100) can be purchased and wired to a 110V AC circuit to provide this output.
Programming Reset-to-Preset Value

The Reset-to-Preset Value is programmed by entering the following:

A) Unit must be in the “Program” mode.

B) The Reset-to-Preset must first be enabled before you can store any values. To accomplish this, depress [CIR# - 1 - 6 - 6 - ENT - (0 or 1) - ENT]. A zero (0) disables a function and a one (1) enables it.

C) Once the Reset-to-Preset has been enabled, you can store a value in memory. This is accomplished by depressing [CIR# - 1 - 6 - 0 - ENT - (Desired Reset Value) - ENT].

NOTE: Valid numbers for CIR# 160 are zero (0) through the programmed scale factor, less one (1).

3.15: Motion Detector

A programmable Motion Detect output will energize a relay when the transducer speed exceeds the customer’s preprogrammed value.

The motion detector is set by entering the following:

A) Unit must be in the “Program” mode.

B) The motion detect must first be enabled before you can store any values. To accomplish this, depress [CIR# - 5 - 5 - ENT - (0 or 1) - ENT]. A one (1) will enable the motion detect output circuit, and LS6 will now be your motion detect output relay. If a zero (0) is entered, the motion detect feature is disabled and LS6 will function as a normal limit switch.

C) To set the value at which the motion detect relay energizes, depress [CIR# - 1 - 7 - 6 - ENT - Scale Factor Increments/Sec. - ENT].

D) To set Speed Displayed Resolution, depress [CIR# - 1 - 9 - 0 - ENT - CIR ON - (Speed/Sec) - ENT]

Sets Speed measurement intervals to .050 second increments.

[CIR# - 1 - 9 - 0 - ENT - CIR OFF]

Display reads speed resolution in Scale Factor increments.

NOTE: A CIR #176 can only be entered if the motion detect option is enabled.
3.16: Power-Up in Position or RPM

The **1995L** can power up displaying either Position or Scale Factor increments/sec. data.

The power-up mode is programmed by entering the following:

A) Unit must be in the “Program” mode.

B) Depress **CIR# - 1 - 6 - 3 - ENT** - *(0 or 1)* - **ENT**. If a zero (0) is entered, positional data will be displayed upon power-up; if a one (1) is entered, the unit will power up displaying Scale Factor increments/sec.

3.17: Decimal Point Programming

A continuous, nonfloating decimal point may be programmed on the display. If a scale factor is selected that needs a decimal point in order to properly display its resolution in engineering units, the following 50 series codes are used:

- **50** - No decimal point; clears existing decimal point
- **51** - Tenths
- **52** - Hundredths

To program a decimal point, enter the following:

A) Unit must be in the “Program” mode.

B) Depress **CIR# - 50 or 51 or 52 - ENT**.

Example:

- CIR# 50 = 123
- CIR# 51 = 12.3
- CIR# 52 = 1.23
3.18: Enable/Disable Outputs

During setup, the outputs may be enabled or disabled. When outputs are selected to be disabled, the status LEDs and the relays will be OFF. The unit must be in the Program mode to disable the outputs; as soon as the unit is switched to the Run mode, the outputs will be enabled.

The enable/disable feature is programmed as follows:

A) Unit must be in the “Program” mode.

B) Depress **CIR# (380 or 381) - ENT**.

CIR# 380 Enables the Outputs.
CIR# 381 Disables the Outputs.

NOTE: If you try to disable the outputs in the Run mode, the unit will display “EEE”.
Chapter 4: Expansion Modules

The 1995L PLS provides six outputs. A 1995E Expansion Module is required for each additional six outputs desired, up to a total of 30 outputs, or four expansion modules. The circuit location of each expansion module is defined by the location of a two-pin jumper on an eight-pin block in the upper left corner of the module. This jumper must be installed for the expansion module to operate. Two pairs of pins, located in the lower right corner of the expansion module, should be jumpered on only the last module in the wiring group. See Fig. 10-4 (Chapter 10: Wiring Diagrams) for additional expansion module wiring information. Each expansion module is provided with a full set of terminal strip designation decals. To avoid confusion, the appropriate decals should be installed along the output terminals, based on the location of the output selection jumper outlined below.

![Diagram of Expansion Module](image)

Fig. 4-1

See Section 3.5: Selecting Number of Outputs, for instructions on how to program unit for use with expansion modules.
Chapter 5: Fault Check

The Fault Check option provides an automatic in-process self-diagnostic mechanism to verify that all PLS functions are operating properly.

The Fault Check option will detect and disable system operation in the event of any of the following problems:

1. Analog to digital converter or associated electronic failure.
2. Microprocessor or 5 volt power supply failure.

Non-system-type faults, such as individual output failures, will not be sensed. It is recommended that the Fault Check output be used as an “operate enable” type signal. Loss of this output should immediately stop the process which is being controlled.

The Fault Check input may be operated by an isolated contact, current sourcing, or current sinking device 5V DC at 10mA.

A normally closed, momentary open contact button can be wired per Fig 10-1, Fig. 10-2, OR Fig. 10-3 (Chapter 10: Wiring Diagrams), to activate the Fault Check circuit, and it will provide a method of resetting the fault output after a fault condition has been sensed.

To reset the Fault Check output after the fault condition has been cleared, the fault reset input must be deactivated (open circuit) and then re-actuated. Cycling the fault reset input will cycle the fault check relay to verify that the Fault Check output is operating properly.

NOTE: If the Fault Check inputs are not wired, the display will still show when there is a fault and the outputs will be disabled, but it will not lock on the fault. However, if the fault check inputs are wired up per Fig. 10-1, Fig. 10-2 or Fig. 10-3 (Chapter 10: Wiring Diagrams), upon seeing a fault, the fault check relay will drop out and all outputs will shut off until the fault is fixed and the fault check input is reset.
5.1: PLS Output Status on Fault Conditions

1) If a fault condition is detected, **ALL** limit switch outputs will turn off and the display will show the following:

 EE4 = Electronic Transducer Tracking Fault
 No Message Microprocessor or 5 Volt Power Supply Failure

 The message will remain on the display and the outputs will be off until the problem is corrected and the fault reset button is pressed and released to reactivate the fault output and return the display and outputs to their normal operation.

2) If the fault condition is the result of a microprocessor failure or lockup, the state of the limit switch output circuits cannot be predicted. However, the fault check output will turn off until the fault is cleared and the fault reset button is pressed and released. Removal and reapplication of power to the PLS system may clear a locked-up condition.
Chapter 6: Security Inputs

The Run/Program security inputs may be operated by an isolated contact, current sourcing, or a current sinking device, 5V DC @ 10mA. See Fig. 10-1, Fig. 10-2 OR Fig. 10-3 (Chapter 10: Wiring Diagrams) for wiring options.

NOTE: The **1995 PLS** cannot be programmed until the security input has been actuated - continuity - between +5V DC and “Security +” input and between “Security -” input and ground.

NOTE: If the Run/Security program is not needed (always in the Program mode) install jumper wires form Pin 9 (+5V DC) to Pin 10 (Security +) and from Pin 11 (Security -) to Pin 14 (GND) on the 16-place LDT connector.
Chapter 7: Troubleshooting

The following procedures are intended to aid in isolating system malfunctions to field replaceable modules. These modules include the 1995 programmer, output relays, LDT and all interconnecting cables. Once isolated, the defective module should be replaced and returned to the factory for repair.

NOTE: Field repair beyond this level is not recommended.

7.1: Preliminary Checks

Check all system wiring connections at the LDT and at the programmer. Amphenol-type connectors on the transducer and its cabling should be checked for tightness. A slight tug on all wire terminations should verify a good connection. Push-on cable connectors should be checked for proper connections. Verify that incoming AC voltage to the 1995 PLS is between 105V AC and 125V AC.

7.2: Electrical Noise and Power Quality Consideration

The 1995 PLS is designed for use in an industrial environment and incorporates extensive transient suppression circuitry. However, the same general installation rules should be followed that apply to all microprocessor-based equipment.

Problems that can be attributed to extreme electrical noise or poor power quality include loss of/or changes in program memory, loss of initialization, keypad or microprocessor lockup, sporadic outputs, and damage to auxiliary input circuits.

7.3: Grounding

Circuit board level noise suppression circuits, ground planes, and cable shields all depend on a good earth ground for proper operation. Our field experience has shown that the quality of the service ground at many machines is marginal.
7.4: Incoming Power

Solenoids, welders, large motors, and variable-speed drives are all devices that generate excessive electrical noise throughout the power grid in a typical industrial environment. Isolation transformers or constant voltage type power supplies should be used to isolate microprocessor-based circuitry. The power on the output side of these isolation devices should be fed to the programmable limit switch and other microprocessor-based devices only. The loads being driven by the programmable limit switch output relays must not get their power from the output side of the isolation device. Using the output side of an isolation device to power loads other than the programmable limit switch totally defeats the purpose of the isolation device.

NOTE: When using an output relay for driving inductive loads such as solenoids, a noise suppression device must be installed across the coil of the load. Use an MOV or RC noise suppressor for AC loads, or a commutating diode for DC loads.

7.5: Low Level Inputs

Low level inputs to the 1995L PLS include the LDT cable and other special purpose contact inputs such as reset-to-preset, fault check, and security.

The LDT should be wired to the 1995 PLS using an uninterrupted run of cable with a shield. Whenever possible, this cable should be run in a conduit by itself. If it must run in a conduit with other wiring, this wiring should not include power wires above 110V AC or wires driving noise producing loads.

If the LDT cable must be run through a terminal strip, it must be mounted in a small enclosure with no other wiring. The shields of the incoming and outgoing cable must be tied together and isolated from ground.

Special purpose contact inputs all operate by connecting the input pin on the 1995L PLS to a power or GND terminal (depending on method wired per Fig. 10-1, Fig. 10-2, Fig. 10-3 (Chapter 10: Wiring Diagrams) on the 1995 PLS through a remote contact or solid-state switch. These computer level signals must be protected from induced electrical noise.

The contact used to activate the input should not be located outside the enclosure in which the 1995 PLS is mounted. Any wiring between the 1995 PLS input terminals and this contact located within the enclosure should be routed away from any power handling relays, contactors, or other noise generating devices.

If the input is to be activated by a remote device, the contact of the remote device should be used to energize a relay within the enclosure. The contacts of this relay are wired to the 1995 PLS input terminals.
Chapter 8: Specifications

8.1: 1995 Micro-Set PLS Programmer

- Resolution: 12 Bit (4096)
- Scale Factor: 2 to 1,000
- Temperature Range: -32°F to 125°F (Operating)
- Range: -0°F to 150°F (Storage)
- Operating Voltage: 110/120V AC 50/60 Hz 300 mA

Inputs
- Transducer: Analog LDT 0 to 10 Volt output
- Logic: Fault check and security 5V DC at 10mA. May be operated by isolated contact, current sourcing or current sinking device.

Outputs
- Plug-in relays listed below

8.2: Mechanical Relay (Single Pole, Double Throw)

- Contact Relay: 10 Amp Isolated Contact
- Pick-Up: 2 ms
- Drop-Out: 15 ms

8.3: AC Solid-State (Single Pole, Normally Open)

- Maximum Load: 1 Amp
- Load Voltage Range: -70 - 250V AC Zero Voltage Switching
- Leading Current: 3 mA at 120V AC
- Voltage Drop w/Output On: 3.0V RMS or Less
- Inputs: N.O. and Common
- Operate & Reset Time: 1/2 cycle of line voltage max. +1ms or less
8.4: DC Solid-State (Single Pole, Normally Open)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Load</td>
<td>-2 Amp DC</td>
</tr>
<tr>
<td>Load Voltage Range</td>
<td>-5 to 60V DC</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>-2 mA Maximum</td>
</tr>
<tr>
<td>“On” State Voltage Drop</td>
<td>-1.5V Maximum</td>
</tr>
<tr>
<td>Surge Current</td>
<td>-5A (1 Sec. Maximum)</td>
</tr>
<tr>
<td>Min. Operational Current</td>
<td>-50 mA</td>
</tr>
<tr>
<td>Operate Time</td>
<td>-0.5ms Maximum</td>
</tr>
<tr>
<td>Reset Time</td>
<td>-2 ms Maximum</td>
</tr>
</tbody>
</table>

8.5: 1995E Output Expansion Module

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>-110/120V AC 50/60 Hz 100 mA</td>
</tr>
</tbody>
</table>
| Temperature Range | -32°F to 125°F (Operating)
 | 0°F to 150°F (Storage) |
| Outputs | -Same as Programmer |
Chapter 9: Troubleshooting Guide

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Shows: EEE</td>
<td>Incorrect programming sequence or unit is not in the program mode. Review Chapter 6: Security Inputs for Run/Program information.</td>
</tr>
<tr>
<td>Display Shows: EE4</td>
<td>Unit has detected a fault. Review Chapters 5: Fault Check and 7: Troubleshooting.</td>
</tr>
<tr>
<td>Display Shows: PPP</td>
<td>Loss of initialization. Loss of initialization indicates a severe power fluctuation or electrical noise. Review Chapter 7: Troubleshooting and Section 3.2: Initialization.</td>
</tr>
<tr>
<td>An individual output relay does not operate, but status light on keypad indicates proper operation.</td>
<td>Output relay failure. If relay status LED on keypad operates, but the relay doesn't turn on, relay may have failed. Replace relay. Review Chapter 7: Troubleshooting.</td>
</tr>
<tr>
<td>Keypad displays meaningless data.</td>
<td>System mounted in a high shock or vibration area causing intermittent electrical connections. System operating in a high electrical noise environment. Review installation instructions concerning routing of cables in Section 8.6: Low Level Inputs and also review general electrical noise considerations in Section 7.2: Electrical Noise and Power Quality Consideration and Chapter 7: Troubleshooting.</td>
</tr>
<tr>
<td>Unit displays EEE when offset button is depressed.</td>
<td>Either unit is not in the program mode, or your unit is equipped with a special access code where only authorized personnel can offset system. Refer to Supplemental Software instructions.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>POSSIBLE CAUSES</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>System operates properly but exhibits a random momentary loss of all outputs.</td>
<td>Random momentary loss of all power to the system. A loss of power for as short a duration as 50 milliseconds will cause the system to shut down. When power is reapplied, the system can take several seconds to reinitialize itself. During this time period, all outputs are disabled. This intermittent loss of power could be caused by a bad terminal strip connection, bad relay contact, application of a very large motor load, or momentary loss of incoming plant power.</td>
</tr>
<tr>
<td>The display and outputs lose synchronization with machine position.</td>
<td>If the reset-to-preset option is being used, electrical noise on the wiring to this input can cause unwanted resets. Preview Section 7.5: Low Level Inputs.</td>
</tr>
<tr>
<td>Flashing decimal points when programming a circuit.</td>
<td>Flashing decimal points indicates multiple setpoints on the selected circuit. To see all settings, continue depressing the "CIR ON" or "CIR OFF" key until all setpoints have been displayed. See Section 3.9 Setpoints.</td>
</tr>
<tr>
<td>LS6 cannot be programmed</td>
<td>LS6 is probably set up for a motion detect circuit. See Section 3.15: Motion Detector for details.</td>
</tr>
<tr>
<td>Display will not update as LDT is Stroked.</td>
<td>Verify that the LDT is receiving its input power. Verify that the LDT is outputting a 0 - 10 Volt Analog signal to the 1995L.</td>
</tr>
<tr>
<td>Expansion module relays will not fire.</td>
<td>Check jumpers on expansion modules for correct position placement. Refer to Chapter 4: Expansion Modules for details. Refer to Fig. 10-4 (Chapter 10: Wiring Diagrams) for correct wiring of expansion modules.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>POSSIBLE CAUSES</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fault check relay not enabled.</td>
<td>The fault check relay will only be enabled when the fault check input is wired per Fig. 10-1, Fig. 10-2 OR Fig. 10-3 (Chapter 10: Wiring Diagrams). If a fault is detected without the input wired, the display will show the fault message and all outputs will be disabled until the fault is fixed. If the fault check input is wired per Fig. 10-1, Fig. 10-2 OR Fig. 10-3 (Chapter 10: Wiring Diagrams) and a fault is detected, the display will show an ERROR MESSAGE. All outputs will be disabled and the fault check OK relay will drop out and will remain dropped out until the fault is fixed and the fault check input is reset. See Chapter 5: Fault Check for details.</td>
</tr>
<tr>
<td>Unit will momentarily display a fault error message.</td>
<td>The system is detecting a momentary fault, but will not lock on it because the fault check input is not wired per Fig. 10-1, Fig. 10-2, Fig. 10-3 (Chapter 10: Wiring Diagrams). See Chapter 5: Fault Check for details.</td>
</tr>
</tbody>
</table>
Chapter 10: Wiring Diagrams

Fig 10-1 Wiring Diagram
Drawing E0221200
Fig 10-2 Wiring Diagram
Drawing E0198202
Fig 10-3 Wiring Diagram
Drawing E0234500
Fig 10-4 Wiring Diagram
Drawing E0204400